Как записать условие к задаче по математике 3 класс: Математика 3 класс Моро
By: Date: 17.05.1970 Categories: Разное

Содержание

Урок 38. решение задач несколькими способами — Математика — 3 класс

Математика, 3 класс

Урок № 38. Решение задач несколькими способами

Перечень вопросов, рассматриваемых в теме:

  1. Какие способы можно использовать при решении текстовых задач?
  2. В решении каких задач нужно использовать правило умножения суммы на число?
  3. В решении каких задач нужно использовать правило деления суммы на число?
  4. Глоссарий по теме:

Задача – математический рассказ с неизвестным.

Схема – краткое условие задачи.

Обязательная литературы и дополнительная литература:

  1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для

общеобразовательных организаций М.; Просвещение, 2017. – с. 18.

  1. М. И. Моро, С.И.Волкова. Для тех, кто любит математику 3 класс. Учебное пособие для общеобразовательных организаций. М.; Просвещение,2018. – с. 12.

Теоретический материал для самостоятельного изучения

Ребята, давайте вспомним, что такое задача.

Задача – это рассказ, в котором требуется что-либо узнать.

Чтобы ответить на вопрос задачи, нужно, понять, о чём в ней говориться, представить ситуацию, описываемую в задаче.

Читать условие нужно внимательно: частями, предложениями.

Чтобы легче было представить то, о чём говорится в задаче, можно сделать рисунок (условный рисунок), построить чертёж (схематический чертёж), выполнить краткую запись, составить таблицу. Это поможет установить зависимость между данными задачи.

Из графических моделей видно, что показывает каждое число, что неизвестно, можно ли сразу ответить на вопрос задачи, если нет, то почему. Составляем план решения задачи, который представляет собой цепочку из последовательных действий.

Записывать решение задачи можно по действиям, с пояснениями, с вопросом к каждому действию или выражением.

После проверки решения задачи, записываем ответ.

Ответ нужно списывать с вопроса. Ответ всегда начинается с числа.

Выбор способа решения задачи зависит от условия задачи и данных.

Выполним тренировочные задания:

1. Решим задачу: «В корзине лежало 10 яблок и 6 груш. Фрукты разложили поровну в 2 вазы. Сколько в одной вазе?»

Решение: (10 + 6) : 2 = 8 штук.

2. Найдите и выделите цветом по вертикали и горизонтали в филворде компоненты задачи

  1. Миша пришил в первый день 12 пуговиц, ещё два дня по 5 пуговиц.;
  2. Сколько пуговиц всего пришил Миша?;
  3. 12 + 5 ∙ 2;
  4. 22 пуговицы.

Слова, которые нужно найти: условие; вопрос; решение; ответ.

3. Решите задачу и выберите правильный ответ: «У Зои 20 открыток с природой и 6 открыток с животными, у Веры 15 открыток с цветами и 15 открыток с городами, а у Алёны в 7 раз меньше, чем у обеих подружек. Сколько открыток у Алёны?»

1) 20 + 6 = 26 (отк.) – у Зои;

2) 15 + 15 = 30 (отк.) – у Веры;

3) (26 + 30) : 7 = 8 (отк.) – у Алёны.

7 открыток; 8 открыток; 9 открыток.

Ответ: у Алёны 8 открыток.

примеры и способы решения математических задач для родителей

На протяжении всего обучения школьникам приходится решать задачи — в начальной школе по математике, а затем по алгебре, геометрии, физике и химии. И хотя условия задач в разных науках отличаются, способы решения основаны на одних и тех же логических принципах. Понимание того, как устроена простая задача по математике, поможет ребёнку разработать алгоритмы для решения задач из других областей науки. Поэтому учить ребёнка решать задачи необходимо уже с первого класса. 

Нередки случаи, когда точные науки вызывают у детей сопротивление. Видя это, учителя и родители записывают таких детей в «гуманитарии», из-за чего они только укрепляются во мнении, что точные науки — это не для них. Преподаватель математики Анна Эккерман уверена, что проблемы с математикой часто имеют исключительно психологический характер:

Детям вбивают в голову, что математика — это сложно. К длинным нудным параграфам в учебнике сложно подступиться. Учитель ставит на ребёнке клеймо «троечника» или «двоечника». Если не внушать детям, что они глупые и у них ничего не получится, у них получится ровно всё.

Чтобы ребёнку было интересно учить математику, он должен понимать, как эти знания пригодятся ему, даже если он не собирается становиться программистом или инженером.

Математика ежедневно помогает нам считать деньги, без умения вычислять периметр и площадь невозможно сделать ремонт, а навык составления пропорций незаменим в кулинарии — используйте это. Превращайте ежедневные бытовые вопросы в математические задачи для ребёнка: пусть польза математики станет для него очевидна. 

Конечно, найти в быту применение иррациональным числам или квадратным уравнениям не так просто. И если польза этих знаний вызывает у подростка вопросы, объясните ему, что с их помощью мы тренируем память, развиваем логическое мышление и остроту ума — навыки, в равной степени необходимые как «технарям», так и «гуманитариям». 

Как правильно научить ребёнка решать задачи

Если ребёнок только начинает осваивать навык решения задач, приучите его придерживаться определённого алгоритма.   

1. Внимательно читаем условия  

Лучше вслух и несколько раз. После того как ребёнок прочитал задачу, задайте ему вопросы по тексту и убедитесь, что ему понятно, что вычислять нужно количество грибов, а не огурцов. Старайтесь не нервничать, если ребёнок упустил что-то из вида. Дайте ему разобраться самостоятельно. Если в условиях упоминаются неизвестные ребёнку реалии — объясните, о чём идёт речь.

Особую сложность представляют задачи с косвенным вопросом, например:

«Один динозавр съел 16 деревьев, это на 3 меньше, чем съел второй динозавр. Сколько деревьев съел второй динозавр?». Невнимательно прочитав условия, ребёнок посчитает 16−3, и получит неправильный ответ, ведь эта задача на самом деле требует не вычитания, а сложения.        

2. Делаем описание задачи

В решении некоторых задач поможет представление данных в виде схемы, графика или рисунка. Чем ярче сложится образ, тем проще будет его осмыслить. Наглядная запись позволит ребёнку не только быстро разобраться в условиях задачи, но и поможет увидеть связь между ними. Часто план решения возникает уже на этом этапе. 

Ребёнок должен чётко понимать значения словесных формул и знать, какие математические действия им соответствуют.  

Формы краткой записи условий задач / shkola4nm.ru

3. Выбор способа решения

Наглядно записанное условие должно подтолкнуть ребёнка к нахождению решения. Если этого не произошло, попробуйте задать наводящие вопросы, проиллюстрировать задачу при помощи окружающих предметов или разыграть сценку. Если один из способов объяснения не сработал — придумайте другой. Многократное повторение одного и того же вопроса неэффективно. 

Все, даже самые сложные, математические задачи сводятся к принципу «из двух известных получаем неизвестное». Но для нахождения этой пары чисел часто требуется выполнить несколько действий, то есть разложить задачу на несколько более простых. 

Ребёнок должен знать способы получения неизвестных данных из двух известных:

  • слагаемое = сумма − слагаемое
  • вычитаемое = уменьшаемое − разность
  • уменьшаемое = вычитаемое + разность
  • множитель = произведение ÷ множитель
  • делитель = делимое ÷ частное
  • делимое = делитель × частное

После того как план действий найден, подробно запишите решение. Оно должно отражать всю последовательность действий — так ребёнок сможет запомнить принцип и пользоваться им в дальнейшем. 

4. Формулировка ответа

Ответ должен быть полным и точным. Это не просто формальность: обдумывая ответ, ребёнок привыкает серьёзно относиться к результатам своего труда. А главное — из описания должна быть понятна логика решения.

Задание из базового курса алгебры домашней онлайн-школы «Фоксфорда», 7 класс

Одна из самых распространённых ошибок — представление в ответе не тех данных, о которых спрашивалось изначально. Если такая проблема возникает, нужно вернуться к первому пункту.   

5. Закрепление результата

Не стоит думать, что выполнив задание один раз, ребёнок сразу научится решать задачи. Полученный результат нужно зафиксировать. Для этого подумайте над решённой задачей ещё немного: предложите ребёнку поискать другой способ решения или спросите, как изменится ответ при изменении того или иного параметра в условии.

Важно, чтобы у ребёнка сложился чёткий алгоритм рассуждений и действий в каждом из вариантов. 

В нашей онлайн-школе, помимо уроков, ученики могут закреплять  свои знания на консультациях в формате открытых часов, где учителя разбирают темы, вызвавшие затруднения, показывают необычные задачи и различные способы их решения. 

Что поможет ребёнку решать задачи  

В заключение расскажем о том, как сделать процесс решения задач проще и интереснее:

  • Для того чтобы решать задачи, необходимо уметь считать. Следует выучить с ребёнком таблицу умножения, освоить примеры с дробями и простые уравнения.
  • Чтобы решение задач не превратилось для ребёнка в рутину, проявите фантазию. Меняйте текст задания в соответствии с интересами ребёнка. Например, решать задачи на движение будет куда интереснее, если заменить банальные поезда трансформерами, летящими навстречу друг другу в эпической схватке. 
  • Дети с развитой логикой учатся решать задачи быстрее. Советуем разбавлять чисто математические задания логическими. Задачи «с подвохом» избавят ребёнка от шаблонного мышления, а задания с большим количеством лишних данных научат выделять главное из большого количества условий.   

<<Блок перелинковки>>

После того как ребёнок решит достаточно задач одного типа, предложите ему самому придумать задачу. Это позволит ему не только закрепить материал, но и проявить творческие способности.

Задачи по математике 3 класс.

Страница 1, 2, 3



Задача 1.

Для приготовления обеда повару понадобилось 24 кг картошки, свеклы в 3 раза меньше, а лука в 2 раза меньше чем свеклы. Сколько килограмм лука потратил повар?

    Решение:

  • 1) 24 : 3 = 8
  • 2) 8 : 2 = 4
  • Выражение: 24 : 8 : 2 = 4
  • Ответ: 4 кг.

Задача 2

Оля вырезала из бумаги 5 квадратов, 7 треугольников, а кругов в 2 раза больше чем треугольников. Сколько всего Оля вырезала фигур?

    Решение:

  • 1) 7 * 2 = 14
  • 2) 5 + 7 + 14 = 26
  • Ответ: 26 фигур.

Задача 3

Первое число 12, второе в 3 раза меньше, а третье в 4 раза больше чем второе. Вычисли сумму этих трех чисел.

    Решение:

  • 1) 12 : 3 = 4 (второе число)
  • 2) 4 * 4 = 16 (третье число)
  • 3) 12 + 4 = 16 (сумма первого и второго чисел)
  • 4) 16 + 16 = 32 (сумма трех чисел)
  • Выражение: 12 : 3 * 4 + 4 + 12 = 32
  • Ответ: 32



Задача 4

В школьную столовую привезли 6 кг, лимонов, яблок на 24 кг больше чем лимонов, а груш на 12 кг меньше чем яблок. Сколько килограмм груш привезли в школьную столовую?

    Решение:

  • 1) 6 + 24 = 30 (в столовую привезли яблок)
  • 2) 30 — 12 = 18 (привезли груш)
  • Выражение: (6 + 24) — 12 = 18
  • Ответ: 18 кг груш привезли в столовую.

Задача 5

Для приготовления обеда повару понадобилось 24 кг картошки, свеклы в 3 раза меньше, а лука в 2 раза меньше чем свеклы. Сколько килограмм лука потратил повар?

    Решение:

  • 1) 24 : 3 = 8 (понадобилось свеклы)
  • 2) 8 : 2 = 4 (понадобилось лука)
  • Выражение: 24 : 3 : 2 = 4
  • Ответ: 4 кг лука понадобилось повару.

Задача 6

Для приготовления крахмала требуется 6 кг картошки. Сколько крахмала получится из 36 кг картофеля?

    Решение:

  • 1) 36 : 6 = 6
  • Ответ: 6 кг крахмала.

Задача 7

В поход пошли 24 мальчика, а девочек в 3 раза меньше, чем мальчиков. Сколько всего детей пошло в поход?

    Решение:

  • 1) 24 : 3 = 8 (девочек пошло в поход)
  • 2) 24 + 8 = 32
  • Выражение: 24 : 3 + 8 = 32
  • Ответ: 32.



Задача 8

Ящик с виноградом и три одинаковых ящика с яблоками весят 45 кг. Сколько весит один ящик с яблоками, если ящик с виноградом весит 15 кг.

    Решение:

  • 1) 45 — 15 = 30 (весят 3 ящика с яблоками)
  • 2) 30 : 3 = 10 (весит один ящик с яблоками)
  • Выражение: (45 — 10) : 3 = 10
  • Ответ: 10 кг.

Задача 9

На детской площадке катались дети на двух и трехколесных велосипедах. Сколько и каких велосипедов было на площадке, если всего было 21 колесо и 8 велосипедов?

    Решение:

  • 1) 8 * 2 = 16 (было бы колес, если бы все велосипеды были двухколесными)
  • 2) 21 — 16 = 5
  • 2) 8 — 5 = 3
  • Ответ: на площадке было 5 трехколесных велосипедов и 3 двухколесных.

Задача 10

В парке выкорчевали 6 орешников, а вместо них посадили 18 орешников. Во сколько раз больше посадили орешников, чем выкорчевали?

    Решение:

  • 1) 18 : 6 = 3
  • Ответ: в 3 раза больше орешников посадили.

Задача 11

Отцу 36 лет, а сыну 9. Во сколько раз отец старше сына и на сколько лет сын моложе отца?

    Решение:

  • 1) 36 : 9 = 4
  • 2) 36 — 9 = 27
  • Ответ: в 4 раза сын моложе отца; на 27 лет отец старше сына.

Задача 12

Автобус за 8 часов работы расходует 48 литров топлива. Сколько литров топлива израсходует автобус за 6 часов работы?

    Решение:

  • 1) 48 : 8 = 6 (литров топлива автобус расходует за 1 час)
  • 2) 6 * 6 = 36 (литров автобус расходует за 6 часов)
  • Выражение: 48 : 8 * 6 = 36
  • Ответ: 36 литров.

Задача 13

В столовую привезли абрикосы. Из них на компот взяли 3 килограмма, а на варенье в 3 раза больше. Сколько всего абрикос привезли в столовую?

    Решение:

  • 1) 3 * 3 = 9 (взяли абрикос на варенье)
  • 2) 3 + 9 = 12 (всего в столовую привезли абрикос)
  • Выражение: 3 * 3 + 3 = 9
  • Ответ: 9 кг абрикос.



Страница 1, 2, 3

Повторяем 3 класс: задачи на скорость, время, расстояние | PRO | Математика

Всем привет! В одной из статей ранее я упоминал о развитии канала на будущее. Что его ждет после сдачи ЕГЭ? И вот настал тот момент, когда я могу небольшими шагами начать воплощать эти обещания в жизнь. И сегодня первым под раздачу попадут ученики начальных классов.

Ученикам начальных классов очень тяжело вливаться в учебную жизнь. Сейчас речь именно о 1-3 классах. Дети еще не приспособлены к такому режиму. Рано вставать в школу, делать домашку, рано ложиться спать. Так еще и этот вирус со своим карантином подлили масло в огонь и не дали детям нормально влиться в школьную жизнь.

Ох сколько мучений и страданий натерпелись родители за те 4-5 месяцев дистанционного обучения. Я их очень понимаю и поэтому запускаю данную сеть статей.

Но еще я хотел обратиться к ваш с выгодным предложением. Недавно я завел сайт, на котором полностью рассказал о себе и о своей деятельности, об услугах, которые я могу предложить как репетитор и о ценах на эти услуги. На сайте также присутствуют все мои возможные социальные сети, так что вы сможете легко связаться со мной. Ссылка на сайт будет в шапке профиля канала.

Простые задачи на движение

Задачи на нахождение скорости

Для начала начнем повторять материал третьего класса. Задача на движение очень много, все они подразделяются на различные пункты и подпункты. Поэтому материал для повторения задач на скорость, время и расстояние затянется на несколько статей, несколько дней и затронет не только 3 , но и 4 классы.

Первый тип задач проходится в самых первых классах. Меньше 3 класса у меня учеников не было, поэтому могу сказать, что задача на движение берет свои истоки из 3 класса. Именно тут мне попадались самые легкие задачи на эту тему. Вот пример:

Уважаемые 3-4 классы, давайте вспоминать, как решаются такие элементарные задачи!

Первым делом нужно записать условие задачи. Ученики, которые попались мне всегда пренебрегают кратким условием, за что обычно получают плохие оценки. Запишем условие, а также вспомни формулу, по которой нужно решать такие задачи:

Записали условие, формулу, понимаем, что нам требуется всего одно действие для решения задачи. Запишем это действие, решим его, и запишем ответ:

Малыши, вы восхитительны! Для того, чтобы точно повторить материал по данной теме до конца, я предлагаю вам решить несколько закрепляющих задач:

Задачи на нахождение времени

Данный пункт также относится к простым задачам. В них меняется только неизвестная составляющая. Давайте сразу же посмотрим на пример одной задачи, попытаемся ее решить:

Как можете заметить, в задачке не известно время. Давайте правильно напишем краткое условие, формулу, по которой решать, решение и ответ:

Тут мы уже большие молодцы, сразу все решили и вопросов лишних не возникло. Но для хорошего закрепления материала предлагаю вам решить еще несколько задач:

Задачи на нахождение расстояния

Заключительный пункт в нашем повторение на сегодня. Также в задаче присутствует небольшое отличие. Нужно будет не делить, а умножать. Давайте посмотрим на саму задачу:

И как обычно, напишем краткое условие, формулу, которой будем пользоваться и решение. Решение также займет у нас всего одной действие.

Уважаемые малыши, вы огромные молодцы, если смогли решить все эти задачи. Для точного усвоения материала рекомендую вам прорешать эти несколько задач:

Спасибо, что дочитали до конца. Я искренне надеюсь, что данный формат будет полезен для младшей аудитории канала. Надеюсь, что статья найдет своего читателя. Обязательно оставляйте свои комментарии, делитесь статьей со знакомыми и просто проявляйте активность на канале. Всего ваш хорошего и до новых встреч!

Как научить детей решать задачи по математике: советы именитых педагогов и простых мам

Научить детей решать задачи по математике — дело учителя, но и родители не должны оставаться в стороне, если их чадо «тормозит» в этом вопросе. Одним учебником математики сыт не будешь. Ведь если научить ребенка самостоятельно решать задачи в 1-3 классах, дальше он будет щелкать как семечки не только задачи по математике, но и по физике, химии, геометрии и др. И самое главное — этот навык пригодится ребенку в жизни!

vogazeta.ru

В статье Как научить ребенка математике мы подробно писали, из каких 4 частей состоит любая задача и что нужно сделать в первую очередь, чтобы ребенок понял, чего от него хотят и как ответить на вопрос задачи. Уяснив алгоритм решения задач, ребенок сможет самостоятельно решить практически любую задачу, даже несмотря на то, что они все кажутся такими разными. 

Основные типы задач по математике: краткий конспект

Небольшой ликбез, т.к. далеко не все родители учились в педагогических ВУЗах и владеют методикой преподавания. Пробежимся по теории, чтобы понимать, кто, кому и чего «должен». Зная ключевые моменты, вам будет проще помочь ребенку в решении задач, которые вызывают у него сложности, вы сможете определить, где пробелы в знаниях и что нужно «подтянуть» в каждом конкретном случае.

iqsha.ru

Рассмотрим самые распространенные виды задач в начальных классах.

1. Простые задачи на сложение и вычитание

К этой группе относятся несколько задач, но для всех есть общие рекомендации:

  • Решаются в одно действие.
  • Иногда удобно составить уравнение.
  • На их примере ребенок должен научится выполнять краткую запись. 
  • Если краткого условия недостаточно, нарисовать рисунок. Если не помог рисунок, показываем на конкретных предметах и производим действия с ними.
  • Четко усвоить, что «+» — это прибавить, увеличить, а «-» — уменьшить, отнять, вычесть.
  • Хорошо запомнить компоненты арифметических действий:

слагаемое + слагаемое = сумма
уменьшаемое — вычитаемое = разность

  • Понять разницу между словами «стало» и «осталось». Четко понимать, что значит «на … меньше», «на … больше».
  • Важно понять и запомнить: чтобы узнать, НА СКОЛЬКО одно число больше или меньше другого, нужно из большего числа вычесть меньшее.
  • Важно понять и запомнить: чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

 

  • Важно понять и запомнить: чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.

 

  • Важно понять и запомнить: чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Задачи с косвенным вопросом

Это самые коварные задачи из этой группы. Внимательно прочитайте условие — и поймете почему.

На стоянке у первого подъезда 7 машин. Это на 2 машины больше, чем на стоянке у второго подъезда. сколько машин на стоянке у второго подъезда.

2. Составные задачи на сложение и вычитание

Эти задачи решаются двумя и более действиями.

Есть несколько способов решения:

  • по действиям с пояснениями;
  • по действиям с вопросами;
  • выражением.

В решении таких задач главное:

  • найти главное и сделать краткую запись;
  • разложить эту задачу на несколько простых и составить план решения;
  • помнить главное: по двум данным находим третье.

3. Задачи на понимание смысла действий умножения и деления

  • Важно запомнить названия компонентов действий и понять их смысл:

1-й множитель х 2-й множитель = произведение
делимое : делитель =частное

  • Ребенок должен понимать, что 1-й множитель показывает, КАКОЕ число повторяется а 2-й множитель показывает — СКОЛЬКО РАЗ оно повторяется.

Это очень важно для правильной записи в задачах, иначе получится бессмыслица.

Советы о том, как научить ребенка осознанно относиться к умножению и делению, вы найдете в нашей статье Как научить детей быстро считать: математика до школы. Если возникли проблемы с решением задач на умножение — сдайте чуть-чуть назад, закрепите осознание этого арифметического действия.

4. Простые задачи на умножение и деление

  • Очень важно понять и запомнить разницу «в «, «на».

«Во сколько раз» или «на сколько»?  Предлог «на» — это сложение или вычитание, а «в» — умножение или деление.

  • Важно понять и запомнить: чтобы узнать, во сколько раз одно число больше или меньше другого, нужно большее число разделить на меньшее.

 5. Составные задачи на все 4 арифметические действия

6. Задачи на цену, количество, стоимость

7. Задачи на движение

Это отдельная обширная тема, вернемся к ней позже.

Типичные ошибки в решении задач

Ошибка №1. Ребенок невнимательно прочитал условие задачи.

Часто бывает так, что ошибки возникают от невнимательности.  Так часто бывает в задачах с косвенным вопросом. Ребенок смотрит на цифры, вроде все логично, но… не верно.

Например: «У Маши 8 конфет, это на 2 меньше, чем у Кати. Сколько конфет у Кати».

Ребенок видит «на 2 меньше» и делает «логичный» вывод, что надо отнять. Отнять можно от бОльшего числа, т.е. сразу напрашивается решение 8-2=6. И ответ: 6 конфет у Кати. А ответ-то не тот! Если внимательно почитать условие, то станет понятно, что у Кати конфет больше чем у Маши. И вовсе тут не отнимать надо.

Как исправить ошибку. Сразу разберитесь с условием, поможет краткая запись.

Ошибка №2. Ребенок допустил ошибку в решении.

Когда в задаче несколько неизвестных, решение затрудняется, требуется выполнить не одно действие, а придумать целую цепочку рассуждений. 

Как исправить ошибку. Для начала определим, каких данных нам не хватает. Решаем по действиям. Находим нужные числа (помним правило: по двум неизвестным находим третье), подставляем их и отвечаем на вопрос задачи.

Ошибка №3. Неправильная запись ответа.

Часто ребенок пишет не то пояснение.

Как исправить ошибку.  Нужно внимательно прочитать вопрос задачи. Уяснить раз и навсегда, что ответ начинается с числа, а дальше пишем, что требовалось найти (переписываем формулировку вопроса задачи). 

Творческий подход в решении задач

www.craftykidsathome.com

  • Учите ребенка рассуждать.
  • Придумывайте задачи с лишними или недостающими данными.

Пусть ребенок сам вычеркнет лишнее, те данные, которые не влияют на решение.

  • Дайте условие, а ребенок пусть сам придумает ответ.
  • Пусть ребенок сам составит обратную задачу.
  • Придумать несколько задач на одно решение.
  • Придумать, как решить задачу другим способом и объяснить его.

На школу надейся, а сам не плошай

Заглянем в педагогику и «расшифруем» мысли умных и заслуженных, исходя из сегодняшних реалий.

В далеком 1867 году К. Ушинский сказал: «У хороших преподавателей дело выходит так, что арифметическая задача есть вместе занимательный рассказ, урок сельского хозяйства или домашней экономии, или историческая или статистическая тема и упражнение в языке».

«Расшифровка» следующая.

  • Ученика нужно поставить в такие условия, чтобы он оказался в эпицентре событий, т.е., решая задачу, видел ее применение в жизни.

Не всегда задачи в школьном учебнике «вдохновляют» современных школьников. Многим не ясно условие по одной простой причине: ребенок не имеет представления о том, что говорится. Например, задача про надои и бидоны с молоком, а городской «деть» и корову-то в глаза не видел, не то, что тонны молока в бидонах. Или в задаче использованы такие значения, которые в жизни нереальны — это затрудняет восприятие, т.к. ребенок все воспринимает буквально.

Задача родителей — помочь ребенку ПОНЯТЬ условие. Любым способом: хоть рисуй, хоть танцуй.

  • К решению задач нужно подходить творчески.

Интерес заставляет ребенка быть активным, а активность в свою очередь усиливает внимание.

В каждодневной жизни нам то и дело приходится решать задачи. Привлекайте ребенка, задавайте вопросы, просите совета. Например, тема ремонта. Вычислить метраж комнаты; просчитать нужное количество краски, зная расход на метр квадратный; купить линолеум, зная длину и ширину комнаты; просчитать, какой метраж выгоднее, если есть напольное покрытие шириной 2, 5 метра и 3 метра, чтобы меньше остатков было и по цене вышло выгоднее. Купить ткань на пошив постельного белья, зная размеры матраса. Примеров масса! И это работает гораздо эффективнее, чем «бездушная» задача в учебнике, которая совершенно не привязана к жизни и не вызывает эмоциональный отклик.

  • При решении жизненных задач у ребенка помимо всего прочего развивается наблюдательность, речь, появляется рабочее настроение, развиваются творческие способности и самостоятельность.

Через некоторое время вы заметите, что ребенок различными способами комбинирует информацию, с легкостью составляет задачи сам, находя идеи в окружающем мире, а не высасывая из пальца.

  • Когда ребенка просят составить собственную задачу, нужно следить и за содержанием, и за решением. Задача должна быть осмысленной и целесообразной.

Например, нельзя допускать таких «ляпов», как «Я съел 13 желтых груш и 20 зеленых яблок. Сколько фруктов я съел?» Задача теряет смысл, если она оторвана от жизни.

  • От задачи надо идти к примеру, а не наоборот.

Дети мыслят не абстрактно, а конкретными образами. Пример 12-6 ни о чем не говорит, а вот ситуация, когда из 12 человек 6 уже купили билеты на футбольный матч — это совсем другое дело. Тут ребенок не задумываясь ответит, что оставшиеся шестеро очень рискуют, нужно поторопиться, иначе билетов может не хватить и придется сидеть у телевизора, вместо того, чтобы активно скандировать на трибунах в поддержку любимой команды.

Лебединцев в своей книге «Введение в современную методику математики» писал: «То влияние, которое может оказывать обучение счислению и вообще математике на умственное развитие детей, находится в прямой зависимости от материала, которым мы пользуемся при обучении; если в учебном материале будут преобладать отвлеченные упражнения в действиях и хитроумные задачи с условиями, лишенными внутренней связи и, по существу, далекими от жизни, то, упражняя учащихся на таком материале, мы, может быть, и выработаем у них формальные навыки в вычислениях и, пожалуй, изощрим их ум для разгадывания разных ребусов и головоломок, но отнюдь не сделаем их более способными к правильному мышлению в жизни или какой-либо области знания…».

Французский педагог Жан Мосе тоже был уверен, что «заставлять ребенка начинать с отвлеченного правила и затем предлагать ему задачи — это значит идти наперекор ходу развития человеческого ума…».

Практические советы по решению задач от реальных мам

fb.ru

Что нам Ушинский, Лебединцев и Мосе, спросим у тех, кто «из нашей песочницы». Как они помогают своим детям решать задачи по математике, что «работает», какие приемы на практике доказали свою эффективность и помогли повысить успеваемость.

Татьяна, мама учеников 4 кл. и 6 кл. 

«Я знаю, что особую сложность у детей вызывают задачи на скорость, поэтому начала готовить своих мальчишек к этому уже с 1 класса. Когда ехали к бабушке в Пинск, говорили о скорости, засекали время, считали сколько мы проехали км, смотрели на знаки и вычисляли сколько нам останется времени, если мы будем ехать с такой же скоростью и сколько, если папа будет ехать с другой. В общем, я очень удивлялась, когда мои пацаны на скорость задачи решали как орехи. Я поняла, что в моем детстве не хватало практического представления того, о чем говорилось в задачах».

Ольга, мама ученика 1 кл. и ученицы 4 кл.

«С задачами старшая плохо дружит))  Почти всегда приходит за помощью. Стараюсь выработать алгоритм решения, но частенько упираюсь в «лень подумать». Если совсем «затык», рисуем схемы. На дополнительные задачи совсем нет времени, а сама по своей воле заниматься ими дочь точно не будет)) Иногда встречаются задачи с некорректно поставленным вопросом, тут приходится помогать с формулировкой ответа.

Младшего усадить за математику очень сложно. В те редкие моменты, когда дело доходит до задач, он их решает в уме и выдает ответ устно).»

Вероника, мама учеников 2 кл. и 4 кл.

«Младший задачи решает без проблем, но ненавидит чертить схемы к ним и писать пояснения. Старший ходит на факультатив по математике, дома домашку сам делает». 

Катерина, мама ученика 2 кл. и ученицы 5 кл.

«Сын отлично справляется сам. Он такие схемы рисует, что я иногда в шоке)). Если за помощью обращается дочь, стараюсь упростить условие задачи до понятных образов, а потом она сама догадывается, как сложную модель решить».

Татьяна, мама ученицы 5 кл.

«Чаще всего прибегаем к рисованию. Прямо вот как по условию… садимся и рисуем, как есть. Так сказать, наглядность помогает. Велосипедист выехал… значит рисуем человечка на велосипеде, город из которого он выехал и тд)))) Если катер плывет по течению, рисуем море, волны)))))) С пояснениями никогда исправлений со стороны учителя не было, да и у нас, собственно, тоже вопросов не возникало. Смотри по условию, что спрашивают — и пиши ответы возле каждого действия».

Наталья, мама ученика 5 кл.

«Приходилось объяснять дроби на примере сломанных карандашей, порванных в клочья бумажек. В гостях в тот момент был друг-проектировщик, он именно так решил наглядно пояснить сыну задачу. Я обычно прибегаю к помощи рисования. В задачах на скорость/время/расстояние рисовали целые истории: кто куда и на чем поехал, кого встретил по дороге и в какой момент. Порой решение задач превращалось в мультфильм, одного черновика обычно мало. Несколько раз решали задачи всей семьей: мама отдельно от папы, потом сравнивали результаты и каждый объяснял ребенку свой «самый рациональный и простой» способ. Как правило, у мужчин своя логика)), мое решение обычно отличается от папиного».

Уважаемые читатели! Делитесь в комментариях своими находками и сложностями в решении задач по математике с детьми. будем разы разобраться вместе и помочь советами и полезными статьями на интересующие вас темы. 

Обучающие карточки на тему «Оформление задач в начальной школе»

Основные виды краткой записи в начальной школе

 

Аннотация: Ученикам часто тяжело представить наглядно задачу. Облегчить процесс решения поможет краткая запись условия задачи. В краткой записи фиксируются величины, числа – данные и искомые, а также некоторые слова, показывающие, о чём говорится в задаче: «было», «положили», «стало» и т. п. и знаки, означающие отношения: «больше», «меньше», «одинаково» и т. п.

Краткую запись задачи ученик выполнять в виде: опорной схемы, таблицы, чертежа, с помощью геометрических фигур.

Для того чтобы краткая запись в максимальной степени способствовала решению задачи, нужно:

1)Краткую запись составлять на основе анализа текста задачи;
2)В краткой записи должно быть минимальное количество условных обозначений;
3)Количество вопросительных знаков в краткой записи должно соответствовать количеству действий в задаче;

4)Форму краткой записи выбирать такую, чтобы она более наглядно представляла условие задачи.

Варианты краткой записи

Задача: В двух бочонках у медведя было 17 кг меда. Из первого бочонка он съел 5 кг и в обоих стало поровну. Сколько кг мёда было в первом бочонке у медведя?

Нагляднее представит задачу запись в виде схемы

Пояснения к решению задачи

Над составной задачей форма работы предусматривает проверку умения учащихся по данным действиям решения задачи пояснить, на какой вопрос и с какой целью отвечает действие. В конце каждого действия пишем пояснение, доказательство того, что мы нашли этим действием. Эта форма помогает учащимся увидеть другие отношения, вести необходимую цепочку логических рассуждений, анализировать и делать выводы.

Ответ задачи

Если использовались пояснения, ответ можно записать кратко. Если же не использовались, пишем полный ответ.

 

 

Задача на нахождение остатка

Задача: В детский сад привезли два бидона с молоком, по 20 л в каждом. За завтраком дети выпили 12 л молока. Сколько литров молока осталось?

Было — 20 л и 20 л
Выпили — 12 л
Осталось — ? л

Простая задача на деление на равные части, оформляем такие задачи в виде таблицы:

В I коробке          Количество коробок          Всего камней
    ? к.                            3 к.                                18 к.

 

Задача. Когда Маша полила 6 грядок, а Ира — 2 грядки, им осталось полить 3 грядки. Сколько всего грядок должны полить дети?

Было — ? гр.
Полили — 6 гр. и 2 гр.
Осталось — 3 гр.

 

Задача: Серёжа высадил 9 луковиц, по 3 луковицы в ряд. Сколько получилось рядов?

Это простая задача на деление по содержанию. Такую задачу нагляднее оформить картинкой.

Составная задача на разностное сравнение, лучше оформить в виде таблицы.

Задача: Одну деталь мастер должен делать за 45 мин, а делает за 38 мин. Сколько времени сэкономит мастер, когда он сделает 8 деталей?

 

 

В помощь родителям!

Можно купить памятку в магазине книг!

 

Советы учителя — Требования к оформлению письменных работ по математике в начальной школе, учитель начальных классов в Москве

Все записи в тетрадях следует оформлять аккуратным каллиграфическим почерком. 


В 1 классе в период обучения грамоте запись даты ведется учителем или учащимися по центру рабочей строки в виде числа и первых букв названия месяца (1 с.). По окончании периода обучения грамоте дата записывается полностью (1 марта.). Со 2 класса допускается запись даты выполнения работы на полях, с указанием числа и месяца (01.09.).


Запись названия работы производится на следующей рабочей строке по центру с пропуском 1 клетки от числа и оформляется как предложение (Классная работа. Домашняя работа. Самостоятельная работа. Работа над ошибками.).Во всех остальных случаях рекомендуется пропускать 2 клетки. При необходимости вариативность работы фиксируется на следующей строке по центру (Вариант I.). 


После выполнения работы (классной или домашней) следует отступать 4 клетки, начиная выполнять очередную работу на пятой клетке. В ходе выполнения работы не допускается необоснованный пропуск строк или наличие пустых мест на строке. Использование правил переноса, принятых в математике, обязательно. 


При выполнении работы на странице требуется соблюдать внешние и внутренние поля. Между столбиками выражений, уравнений, неравенств и другими видами заданий отступаются три клетки вправо. Запись нового столбика начинается с четвертой клетки. 


При оформлении письменных заданий по математике рекомендуется указывать его номер (No 5) без уточнения вида (Задача, Неравенства, Выражения) Краткая запись условия задачи оформляется в соответствии с их видом (краткая запись, схема, чертеж, таблица, диаграмма, рисунок). Ключевые слова в краткой записи пишутся с большой буквы. 


В 1 классе допускается их сокращение по первым буквам: М. – 7 м. Б. – 3 м. 


Начиная с 2 класса по усмотрению учителя ключевые слова в краткой записи могут быть зафиксированы полностью: Маленькие – 7 м. Большие – 3 м. 


При записи решения задачи по действиям с письменными пояснениями (с записью вопроса) или выражением после каждого действия ставится наименование в круглых скобках с использованием правил сокращения слов. Слово «Ответ» пишется под решением с заглавной буквы с отступлением 1 клетки вниз. 


В первом классе ответ задачи может быть записан в краткой форме (От. 10 ябл.). 


Со 2 класса слово «Ответ» записывается полностью (Ответ: 10 яблок.). 


Оформление условия задачи при помощи схемы, чертежа, таблицы, диаграммы или рисунка осуществляется с использованием линейки и простого карандаша. Краткую запись не следует делать громоздкой, она должна быть удобной, отображать все числовые данные задачи и взаимоотношения между величинами. 

При оформлении записи задач геометрического характера необходимо соблюдение следующих норм:

  • чертежи выполнять простым карандашом по линейке;
  • геометрическую фигуру чертить в тех случаях, когда этого требует условие задачи;
  • результаты измерений подписывать ручкой;
  • обозначения выполнять прописными буквами латинского алфавита. 


При оформлении математического диктанта следует записывать только ответы в строчку, отступая одну клетку.

4 СТРОКИ МАТЕМАТИЧЕСКИХ ЗНАНИЙ | Сложим: помощь детям в изучении математики

Fuson, K.C., & Burghardt, B.H. (1993). Групповые тематические исследования второклассников, изобретающих многозначные процедуры сложения десятичных блоков и письменных оценок. В J.R.Becker & B.J.Pence (Eds.), Proceedings of the пятнадцатого ежегодного собрания Североамериканского отделения Международной группы психологии математического образования (стр. 240–246).Сан-Хосе, Калифорния: Государственный университет Сан-Хосе. (Услуга размножения документов ERIC № ED 372 917).

Fuson, K.C., Carroll, W.M., & Landis, J. (1996). Уровни осмысления и решения сложения и вычитания сравнивают словесные задачи. Познание и обучение , 14 , 345– 371.

Гири, округ Колумбия (1995). Отражения эволюции и культуры в детском познании. Американский психолог , 50 (1), 24–37.

Грино Дж. Г., Пирсон П. Д. и Шонфельд А. Х. (1997). Последствия для NAEP исследований в области обучения и познания. В: Р. Линн, Р. Глейзер и Г. Борнштедт (редакторы), Оценка в переходный период: мониторинг национального прогресса в области образования (Справочные исследования, стр. 151–215). Стэнфорд, Калифорния: Национальная академия образования.

Hagarty, M., Mayer, R.E., & Monk, C.A. (1995). Понимание арифметических словесных задач: сравнение успешных и неудачных решателей задач. Журнал педагогической психологии , 87 , 18–32.

Хатано, Г. (1988, осень). Социальные и мотивационные основы математического понимания. Новые направления развития ребенка , 41 , 55–70.

Хиберт, Дж. (Ред.). (1986). Концептуальные и процедурные знания: пример математики . Хиллсдейл, Нью-Джерси: Эрлбаум.

Хиберт, Дж., И Карпентер, Т.П. (1992). Учиться и преподавать с пониманием. В Д. А. Гроуза (ред.), Справочник по исследованиям в области преподавания и обучения математике (стр. 65–97). Нью-Йорк: Макмиллан.

Хиберт, Дж., Карпентер, Т.П., Феннема, Э., Фусон, К.С., Вирн, Д., Мюррей, Х., Оливье, А., и Хумэн, П. (1997). Осмысление: преподавание и изучение математики с пониманием . Портсмут, Нью-Хэмпшир: Heinemann.

Хиберт Дж. И Уирн Д. (1986). Процедуры над понятиями: приобретение знаний о десятичных числах.В J.Hiebert (Ed.), Концептуальные и процедурные знания: случай математики (стр. 199–223). Хиллсдейл, Нью-Джерси: Эрлбаум.

Хиберт Дж. И Уирн Д. (1996). Обучение, понимание и навыки сложения и вычитания многозначных чисел. Познание и обучение , 14 , 251–283.

Хилгард, Э. Р. (1957). Введение в психологию (2-е изд.). Нью-Йорк: Харкорт Брейс.

Инелдер, Б., И Пиаже Дж. (1958). Развитие логического мышления с детства до подросткового возраста . Нью-Йорк: Основные книги.

Катона, Г. (1940). Организация и запоминание . Нью-Йорк: издательство Колумбийского университета.

Килпатрик Дж. (1985). Заниматься математикой, не понимая ее: комментарий к Хигби и Кунихире. Психолог-педагог , 20 (2), 65–68.

Кнапп, М.С., Шилдс П.М. и Тернбулл Б.Дж. (1995). Академическая задача в классах с высоким уровнем бедности. Дельта Фи Каппан , 76 , 770–776.

Куба В.Л., Карпентер Т.П. и Сваффорд Дж. (1989). Количество и операции. В М. М. Линдквисте (ред.), Результаты четвертой математической оценки Национальной системы оценки успеваемости (стр. 64–93). Рестон, Вирджиния: Национальный совет учителей математики.

120 Задачи по математике для учащихся 1–8 классов

Вы сидите за партой, готовые вместе выполнить викторину, тест или задание по математике.Вопросы перетекают в документ до тех пор, пока вы не попадете в раздел с текстовыми проблемами.

Помогла бы толчка творчества. Но этого не произошло.

Независимо от того, являетесь ли вы учителем 3-го класса или учителем 8-го класса, готовящим учеников к старшей школе, воплощение математических концепций в примеры из реальной жизни, безусловно, может стать проблемой.

Этот ресурс — ваш творческий заряд. Он предоставляет примеры и шаблоны математических задач на слова для 1-8 классов.

Всего 120 примеров.Помогая вам разобраться в них, чтобы найти вопросы для ваших учеников, ресурс разделен на категории по следующим навыкам с некоторым перекрытием между темами:

Список примеров дополнен советами по созданию увлекательных и сложных математических словесных задач.

120 Математические задачи со словами, классифицированные по навыкам

Задачи со сложением слов

Подходит для: 1-й класс, 2-й класс

1. В сумме 10: Ариэль играла в баскетбол.1 из ее выстрелов попал в обруч. 2 ее выстрела не попали в обруч. Сколько всего было выстрелов?

2. Добавление к 20: У Адрианны есть 10 кусочков жевательной резинки, которыми она может поделиться с друзьями. На всех ее подруг не хватило жевательной резинки, поэтому она пошла в магазин за еще тремя кусочками жевательной резинки. Сколько кусочков жевательной резинки сейчас у Адрианны?

3. Добавление к 100: У Адрианны есть 10 кусочков жевательной резинки, которыми она может поделиться с друзьями. На всех ее подруг не хватило жевательной резинки, поэтому она пошла в магазин и купила 70 кусочков клубничной жевательной резинки и 10 кусочков жевательной резинки.Сколько кусочков жевательной резинки сейчас у Адрианны?

4. Добавление чуть больше 100: В ресторане 175 обычных стульев и 20 стульев для младенцев. Сколько всего стульев в ресторане?

5. Добавляем к 1000: Сколько печенья вы продали, если продали 320 шоколадных печений и 270 ванильных печений?

6. Добавление до 10 000 и более: Обычно магазин товаров для хобби продает 10 576 торговых карточек в месяц. В июне в магазине товаров для хобби было продано на 15 498 карточек больше, чем обычно.В целом, сколько коллекционных карточек было продано в магазине для хобби в июне?

7. Сложение 3 чисел: У Билли дома было 2 книги. Он пошел в библиотеку, чтобы достать еще 2 книги. Затем он купил 1 книгу. Сколько книг сейчас у Билли?

8. Добавление трех чисел к 100 и более: Эшли купила большой мешок конфет. В сумке было 102 синих конфеты, 100 красных и 94 зеленых. Сколько всего было конфет?

Задачи на вычитание слов

Подходит для: 1-й класс, второй класс

9.Вычитаем до 10: Всего в пиццерии было 3 пиццы. Покупатель купил 1 пиццу. Сколько пиццы осталось?

10. Вычитая до 20: Ваша подруга сказала, что у нее 11 наклеек. Когда вы помогли ей убрать стол, у нее было всего 10 наклеек. Сколько наклеек не хватает?

11. Вычитая до 100: У Адрианны есть 100 кусочков жевательной резинки, которыми она может поделиться с друзьями. Когда она пошла в парк, она разделила 10 кусочков клубничной жевательной резинки. Когда она вышла из парка, Адрианна поделилась еще 10 кусочками жевательной резинки.Сколько кусочков жевательной резинки сейчас у Адрианны?

Зарегистрируйтесь сейчас

12. Вычитание Немного больше 100: Ваша команда набрала 123 очка. В первом тайме было набрано 67 очков. Сколько было забито во втором тайме?

13. Вычитаем до 1000: У Натана большая муравьиная ферма. Он решил продать несколько своих муравьев. Он начал с 965 муравьев. Продал 213. Сколько муравьев у него сейчас?

14. Вычитая до 10 000 и более: Обычно магазин товаров для хобби продает 10 576 торговых карточек в месяц.В июле в магазине товаров для хобби было продано 20 777 коллекционных карточек. Сколько коллекционных карточек было продано в магазине в июле по сравнению с обычным месяцем?

15. Вычитание 3 чисел: У Шарлин была пачка из 35 карандашей. 6 она отдала своей подруге Терезе. Она дала 3 своей подруге Мэнди. Сколько мелков осталось у Шарлин?

16. Вычитание трех чисел из 100: Эшли купила большой мешок конфет, чтобы поделиться с друзьями. Всего конфет было 296 штук.Она подарила Мариссе 105 конфет. Еще она подарила Кайле 86 конфет. Сколько конфет осталось?

Задачи умножения слов

Подходит для: 2-й класс, 3-й класс

17. Умножение однозначных целых чисел: Адрианне нужно разрезать форму с пирожными на части. Она нарезает на сковороду 6 ровных столбиков и 3 ровных ряда. Сколько у нее пирожных?

18. Умножение 2-значных целых чисел: В кинотеатре 25 рядов сидений по 20 мест в каждом ряду.Сколько всего мест?

19. Умножение целых чисел, заканчивающееся на 0: Компания по производству одежды предлагает 4 различных вида толстовок. Ежегодно компания производит 60 000 толстовок каждого вида. Сколько свитшотов компания производит каждый год?

20. Умножение 3 целых чисел: Каменщик укладывает кирпичи в 2 ряда по 10 кирпичей в каждом ряду. Сверху каждого ряда находится стопка из 6 кирпичей. Сколько всего кирпичей?

21.Умножение 4 целых чисел: Кэли зарабатывает 5 долларов в час, разнося газеты. Она доставляет газеты 3 дня в неделю по 4 часа за раз. Сколько денег заработает Кэли после доставки газет в течение 8 недель?

Задачи с разделением слов

Подходит для: 3-й класс, 4-й класс, 5-й класс

22. Деление однозначных целых чисел: Если у вас есть 4 леденца, равномерно разделенные на 2 пакета, сколько штук конфет в каждой сумке?

23.Деление 2-значных целых чисел: Если у вас есть 80 билетов на ярмарку, и каждая поездка стоит 5 билетов, сколько поездок вы сможете совершить?

24. Разделительные числа, оканчивающиеся на 0: У школы есть 20 000 долларов на покупку нового компьютерного оборудования. Если каждая единица оборудования стоит 50 долларов, сколько всего ее может купить школа?

25. Деление 3 целых чисел: Мелисса покупает 2 упаковки теннисных мячей на общую сумму 12 долларов. Всего 6 теннисных мячей. Сколько стоит 1 упаковка теннисных мячей? Сколько стоит 1 теннисный мяч?

26.Остальные переводчики: Итальянский ресторан получил партию из 86 котлет из телятины. Если на блюдо нужно 3 котлеты, сколько котлет останется в ресторане после приготовления как можно большего количества блюд?

Задачи со смешанными операциями со словами

Подходит для: 3-й класс, 4-й класс, 5-й класс

27. Смешивание сложения и вычитания: В библиотеке 235 книг. В понедельник вывозят 123 книги. Во вторник возвращено 56 книг.Сколько сейчас книг?

28. Смешивание, умножение и деление: Есть группа из 10 человек, которые заказывают пиццу. Если каждый человек получает 2 куска, а у каждой пиццы 4 куска, сколько пиццы им следует заказать?

29. Смешивание, умножение, сложение и вычитание: У Ланы есть 2 пакета по 2 шарика в каждом. У Маркуса 2 сумки по 3 шарика в каждой. Сколько еще шариков у Маркуса?

30. Подразделение смешивания, сложения и вычитания: У Ланы есть 3 мешка с одинаковым количеством шариков в них, всего 12 шариков.У Маркуса 3 сумки с таким же количеством шариков, всего 18 шариков. Сколько еще шариков у Маркуса в каждой сумке?

Упорядочивание слов и задачи с распознаванием чисел

Подходит для: 2-й класс, 3-й класс

31. Подсчет для предварительного умножения: В вашем классе 2 классные доски. Если на каждую классную доску нужно 2 куска мела, сколько всего кусков вам нужно?

32. Подсчет перед предварительным просмотром: В вашем классе 3 классные доски.На каждой доске по 2 мелка. Это означает, что всего есть 6 мелков. Если вы возьмете 1 кусок мела с каждой доски, сколько их всего будет?

33. Составление чисел: Какое число 6 десятков и 10 единиц?

34. Числа для угадывания: У меня 7 в разряде десятков. У меня четное число вместо единиц. Мне меньше 74. Какой я номер?

35. В поисках заказа: В хоккейном матче Митчелл набрал больше очков, чем Уильям, но меньше очков, чем Остон.Кто набрал больше всего очков? Кто набрал меньше всего очков?

Задачи со словами на дроби

Подходит для: 3-й класс, 4-й класс, 5-й класс, 6-й класс

36. Поиск фракций группы: Джулия пошла на Хэллоуин в 10 домов на своей улице. В 5 домах ей подарили плитку шоколада. В какой части домов на улице Джулии ей дали плитку шоколада?

37. Поиск фракций единицы: Хизер рисует портрет своей лучшей подруги Лизы.Чтобы было легче, она делит портрет на 6 равных частей. Какая дробь представляет каждую часть портрета?

38. Сложение дробей с одинаковыми знаменателями: Ной проходит ⅓ километра до школы каждый день. Он также проходит ⅓ километра, чтобы вернуться домой после школы. Сколько всего километров он проходит?

39. Вычитание дробей с одинаковыми знаменателями: На прошлой неделе Уитни подсчитала количество коробок сока, которые у нее были на школьные обеды. У нее было случая.На этой неделе осталось случая. Сколько вина выпила Уитни?

40. Сложение целых чисел и дробей с одинаковыми знаменателями: В обеденное время в кафе-мороженом подавали 6 ложек шоколадного мороженого, 5 ложек ванили и 2 ложки клубники. Сколько всего шариков мороженого обслужили в салоне?

41. Вычитание целых чисел и дробей с одинаковыми знаменателями: На вечеринке у Хайме было 5 бутылок колы, чтобы ее друзья выпили.Она сама выпила бутылки. Ее друзья выпили 3 ⅓. Сколько бутылок колы осталось у Хайме?

42. Сложение дробей с непохожими знаменателями: Кевин выполнил ½ задания в школе. Вернувшись в тот вечер домой, он выполнил ⅚ другого задания. Сколько заданий выполнил Кевин?

43. Вычитание дробей с непохожими знаменателями: Собирая школьные обеды для своих детей, Пэтти использовала упаковки ветчины. Еще она использовала ½ упаковки индейки.Насколько больше ветчины, чем индейки, использовала Пэтти?

44. Умножение дробей: Во время урока физкультуры в среду ученики пробежали километра. В четверг они пробежали ½ километра, как в среду. Сколько километров пробежали студенты в четверг? Запишите свой ответ дробью.

45. Разделение на фракции: Производитель одежды использует флакона цветного красителя для изготовления одной пары брюк. Производитель вчера использовал бутылки. Сколько пар брюк изготовил производитель?

46.Умножение дробей на целые числа: Марк на этой неделе выпил ⅚ пакета молока. Фрэнк выпил в 7 раз больше молока, чем Марк. Сколько пакетов молока выпил Фрэнк? Запишите свой ответ дробью, целым или смешанным числом.

Десятичные числа задачи со словами

Подходит для: 4-й класс, 5-й класс

47. Добавление десятичных знаков: У вас в миске 2,6 грамма йогурта, и вы добавляете еще одну ложку 1,3 грамма. Сколько всего йогурта у вас есть?

48.Вычитание десятичных знаков: У Джеммы было 25,75 грамма глазури для приготовления торта. Она решила использовать только 15,5 грамма глазури. Сколько глазури осталось у Джеммы?

49. Умножение десятичных дробей на целые числа: Маршалл проходит в общей сложности 0,9 километра до школы и обратно каждый день. Сколько километров он пройдет через 4 дня?

50. Разделение десятичных знаков на целые числа: Чтобы сделать Пизанскую башню из спагетти, миссис Робинсон купила 2 штуки.5 килограммов спагетти. Всего ее ученики смогли построить 10 наклонных башен. Сколько килограммов спагетти нужно для изготовления 1 падающей башни?

51. Смешивание сложения и вычитания десятичных знаков: У Рокко в холодильнике 1,5 литра апельсиновой соды и 2,25 литра виноградной соды. У Антонио 1,15 литра апельсиновой газировки и 0,62 литра виноградной газировки. Насколько больше газировки у Рокко, чем у Анджело?

52. Смешивание умножения и деления десятичных знаков: 4 дня в неделю Лаура занимается боевыми искусствами на 1 ед.5 часов. Учитывая, что в неделе 7 дней, каково ее среднее время занятий в день каждую неделю?

Сравнение и упорядочение словарных задач

Подходит для: Детский сад, 1-й класс, 2-й класс

53. Сравнение однозначных целых чисел: У вас 3 яблока, и у вашего друга 5 яблок. У кого больше?

54. Сравнение 2-значных целых чисел: У вас 50 конфет, а у вашего друга 75 конфет. У кого больше?

55.Сравнение различных переменных: На детской площадке 5 баскетбольных мячей. На детской площадке установлено 7 футбольных мячей. Есть еще баскетбольные мячи или футбольные мячи?

56. Последовательность 1-значных целых чисел: У Эрика 0 наклеек. Каждый день он получает еще 1 наклейку. Сколько дней до того, как он получит 3 наклейки?

57. Пропуск по нечетным числам: Натали начала с 5. Она начала счет по пятеркам. Могла ли она сказать число 20?

58. Пропуск по четным числам: Наташа начала с 0.Она пропустила счет до восьмерок. Могла ли она сказать число 36?

59. Последовательность 2-значных чисел: Каждый месяц Джереми добавляет такое же количество карточек в свою коллекцию бейсбольных карточек. В январе у него было 36. В феврале 48. 60 марта. Сколько бейсбольных карточек будет у Джереми в апреле?

Задачи со словом времени

Подходит для: 1-й класс, 2-й класс

66. Преобразование часов в минуты: Джереми помогал своей маме 1 час.Сколько минут он ей помогал?

69. Добавление времени: Если вы просыпаетесь в 7:00 утра и вам требуется 1 час 30 минут, чтобы собраться и пойти в школу, в какое время вы придете в школу?

70. Время вычитания: Если поезд отправляется в 14:00. и прибывает в 16:00, сколько времени пассажиры находились в поезде?

71. Определение времени начала и окончания: Ребекка вышла из магазина своего отца, чтобы пойти домой в двадцать семь вечера.Через сорок минут она была дома. Во сколько она приехала домой?

Задачи с деньгами

Подходит для: 1-й, 2-й, 3-й, 4-й класс, 5-й класс

60. Добавление денег: Томас и Мэтью копят деньги, чтобы вместе купить видеоигру . Томас сэкономил 30 долларов. Мэтью сэкономил 35 долларов. Сколько денег они накопили в общей сложности?

61. Вычитание денег: Томас накопил 80 долларов. На свои деньги он покупает видеоигру.Видеоигра стоит 67 долларов. Сколько денег у него осталось?

62. Умножение денег: Тим получает 5 долларов за доставку бумаги. Сколько у него будет денег после 3-х раздачи бумаги?

63. Разделение денег: Роберт потратил 184,59 доллара на покупку 3 хоккейных клюшек. Если каждая хоккейная клюшка была одинаковой по цене, сколько стоила 1?

64. Сложение денег с десятичными знаками: Вы пошли в магазин и купили жевательную резинку за 1,25 доллара и присоску за 0,50 доллара. Сколько было у вас всего?

65.Вычитание денег с десятичными знаками: Вы пошли в магазин с 5,50 долларами. Вы купили жевательную резинку за 1,25 доллара, плитку шоколада за 1,15 доллара и присоску за 0,50 доллара. Сколько у тебя осталось денег?

67. Применение пропорциональных отношений к деньгам: Якоб хочет пригласить 20 друзей на свой день рождения, который обойдется его родителям в 250 долларов. Если он вместо этого решит пригласить 15 друзей, сколько денег это будет стоить его родителям? Предположим, что отношение прямо пропорционально.

68.Применение процентов к деньгам: Retta положила 100 долларов США на банковский счет, который приносит 20% годовых. Сколько процентов будет накоплено за 1 год? И если она не снимает деньги, сколько денег будет на счету через 1 год?

Проблемы с физическим измерением слов

Подходит для: 1-го класса, 2-го класса, 3-го класса, 4-го класса

72. Сравнение измерений: Линейка Кассандры имеет длину 22 сантиметра. Линейка апреля имеет длину 30 сантиметров.На сколько сантиметров длиннее линейка апреля?

73. Измерения в контексте: Представьте себе школьный автобус. Какая единица измерения лучше всего описывает длину автобуса? Сантиметры, метры или километры?

74. Добавление измерений: Папа Миши хочет сэкономить на бензине, поэтому он отслеживает, сколько он использует. В прошлом году папа Миши использовал 100 литров бензина. В этом году ее отец использовал 90 литров бензина. Сколько всего газа он использовал за два года?

75.Вычитание измерений: Папа Миши хочет сэкономить на бензине, поэтому он отслеживает, сколько он потребляет. За последние два года папа Миши использовал 200 литров бензина. В этом году он использовал 100 литров газа. Сколько газа он использовал в прошлом году?

76. Умножение объема и массы: Кира хочет убедиться, что у нее крепкие кости, поэтому она выпивает 2 литра молока каждую неделю. Сколько литров молока выпьет Кира через 3 недели?

77. Разделение объема и массы: Лилиан занимается садоводством, поэтому она купила 1 килограмм земли.Она хочет равномерно распределить почву между двумя растениями. Сколько получит каждое растение?

78. Преобразование массы: Ингер идет в продуктовый магазин и покупает 3 тыквы, каждая из которых весит 500 грамм. Сколько килограммов кабачков купила Ингер?

79. Преобразование объема: У Шэда есть киоск для лимонада, и он продал 20 чашек лимонада. Каждая чашка была 500 миллилитров. Сколько литров всего продала Шад?

80. Конвертируемая длина: Стейси и Мильда сравнивают свой рост.Рост Стейси 1,5 метра. Милда на 10 сантиметров выше Стейси. Какой рост у Милды в сантиметрах?

81. Расстояние и направление: Автобус отправляется из школы, чтобы отвезти учеников на экскурсию. Автобус едет на 10 километров на юг, 10 километров на запад, еще 5 километров на юг и 15 километров на север. В каком направлении должен ехать автобус, чтобы вернуться в школу? Сколько километров он должен пройти в этом направлении?

Соотношение и процентное соотношение словарных задач

Подходит для: 4-й класс, 5-й класс, 6-й класс

82.Поиск недостающего числа: Соотношение трофеев Дженни и трофеев Мередит составляет 7: 4. У Дженни 28 трофеев. Сколько у Мередит?

83. Поиск недостающих номеров: Соотношение трофеев Дженни и трофеев Мередит составляет 7: 4. Разница между числами — 12. Какие числа?

84. Коэффициенты сравнения: В младшем школьном оркестре 10 саксофонистов и 20 трубачей. В старшем оркестре школы 18 саксофонистов и 29 трубачей.У какого оркестра более высокое соотношение трубачей и саксофонистов?

85. Определение процентного соотношения: Мэри опросила учеников своей школы, чтобы определить их любимые виды спорта. 455 из 1200 студентов назвали хоккей своим любимым видом спорта. Какой процент студентов назвал хоккей своим любимым видом спорта?

86. Определение процента изменения: Десять лет назад население Оквилла составляло 67 624 человека. Теперь он на 190% больше. Каково население Оквилля в настоящее время?

87.Определение процентов чисел: На пункте проката коньков 60% из 120 коньков — для мальчиков. Если остальные коньки для девочек, сколько их?

88. Расчет средних значений: В течение 4 недель Уильям вызвался помощником на занятиях по плаванию. Первую неделю он работал волонтером по 8 часов. Он работал волонтером 12 часов на второй неделе и еще 12 часов на третьей неделе. На четвертой неделе он работал волонтером по 9 часов. Сколько часов в среднем он работал волонтером в неделю?

Проблемы слов вероятности и взаимосвязи данных

Подходит для: 4-й класс, 5-й класс, 6-й класс, 7-й класс

89.Понимание предпосылки вероятности: Джон хочет узнать любимое телешоу его класса, поэтому он опрашивает всех мальчиков. Будет ли выборка репрезентативной или необъективной?

90. Понятие материальной вероятности: Грани на большом количестве кубиков помечены цифрами 1, 2, 3, 4, 5 и 6. Вы бросаете кубик 12 раз. Сколько раз вы должны ожидать, что вам выпадет 1?

91. Изучение дополнительных событий: Цифры от 1 до 50 находятся в шляпе. Если вероятность выпадения четного числа составляет 25/50, какова вероятность НЕ выпадать четное число? Выразите эту вероятность дробью.

92. Исследование экспериментальной вероятности: В пиццерии недавно было продано 15 пицц. 5 из этих пицц были пепперони. Отвечая дробью, какова экспериментальная вероятность того, что следующая пицца будет пепперони?

93. Знакомство с взаимосвязями данных: Маурита и Феличе проходят по 4 теста. Вот результаты 4 тестов Мауриты: 4, 4, 4, 4. Вот результаты 3 из 4 тестов Феличе: 3, 3, 3. Если среднее значение Мауриты по 4 тестам на 1 балл выше, чем у Феличе, каков результат? оценка 4-го теста Феличе?

94.Представляем пропорциональные отношения: Магазин А продает 7 фунтов бананов за 7 долларов. Магазин B продает 3 фунта бананов по цене 6 долларов. В каком магазине выгоднее?

95. Написание уравнений для пропорциональных отношений: Лайонел любит футбол, но у него проблемы с мотивацией к тренировкам. Итак, он стимулирует себя с помощью видеоигр. Существует пропорциональная зависимость между количеством упражнений, которые Лайонел выполняет, в x , и тем, сколько часов он играет в видеоигры, в y .Когда Лайонел выполняет 10 упражнений, он играет в видеоигры 30 минут. Напишите уравнение для связи между x и y .

Геометрические задачи со словами

Подходит для: 4-й, 5-й, 6-й, 7-й, 8-й классы

96. Представляем Периметр: В театре 4 стула в ряд. Всего 5 рядов. Если использовать строки в качестве единицы измерения, каков периметр?

97. Зона ознакомления: В театре 4 стула в ряд.Всего 5 рядов. Сколько всего стульев?

98. Введение Том: Аарон хочет знать, сколько конфет может вместить его контейнер. Контейнер имеет высоту 20 сантиметров, длину 10 сантиметров и ширину 10 сантиметров. Каков объем контейнера?

99. Понимание 2D-форм: Кевин рисует фигуру с 4 равными сторонами. Какую форму он нарисовал?

100. Обнаружение периметра 2D-форм: Митчелл написал свои домашние вопросы на листе квадратной бумаги.Каждая сторона бумаги по 8 сантиметров. Какой периметр?

101. Определение площади 2D-форм: Одна торговая карточка имеет длину 9 см и ширину 6 см. Какая у него площадь?

102. Что такое 3D-фигуры: Марта рисует фигуру с 6 квадратными гранями. Какую форму она нарисовала?

103. Определение площади поверхности трехмерных фигур: Какова площадь поверхности куба шириной 2 см, высотой 2 см и длиной 2 см?

104.Определение объема 3D-форм: Контейнер для конфет Аарона имеет высоту 20 сантиметров, длину 10 сантиметров и ширину 10 сантиметров. Контейнер Брюса имеет высоту 25 сантиметров, длину 9 сантиметров и ширину 9 сантиметров. Найдите объем каждого контейнера. В зависимости от объема, чей контейнер может вместить больше конфет?

105. Определение прямоугольных треугольников: Треугольник имеет следующие длины сторон: 3 см, 4 см и 5 см. Этот треугольник прямоугольный?

106.Определение равносторонних треугольников: Треугольник имеет следующие длины сторон: 4 см, 4 см и 4 см. Что это за треугольник?

107. Определение равнобедренных треугольников: Треугольник имеет следующие длины сторон: 4 см, 5 см и 5 см. Что это за треугольник?

108. Определение треугольников из чешуи: Треугольник имеет следующие длины сторон: 4 см, 5 см и 6 см. Что это за треугольник?

109. Определение периметра треугольников: Луиджи построил палатку в форме равностороннего треугольника.Периметр 21 метр. Какова длина каждой стороны палатки?

110. Определение площади треугольников: Какова площадь треугольника с основанием в 2 единицы и высотой 3 единицы?

111. Применение теоремы Пифагора: Прямоугольный треугольник имеет длину одной стороны без гипотенузы 3 дюйма и длину гипотенузы 5 дюймов. Какова длина другой стороны без гипотенузы?

112. Определение диаметра круга: Жасмин купила новый круглый рюкзак.Его площадь составляет 370 квадратных сантиметров. Какой диаметр у круглого рюкзака?

113. Поиск области круга: Круглый щит Капитана Америки имеет диаметр 76,2 сантиметра. Какова площадь его щита?

114. Определение радиуса круга: Скайлар живет на ферме, где его отец держит круглый кукурузный лабиринт. Кукурузный лабиринт имеет диаметр 2 километра. Каков радиус лабиринта?

Переменные задачи со словами

Подходит для: 6-й, 7-й, 8-й класс

115.Определение независимых и зависимых переменных: Виктория печет кексы для своего класса. Количество кексов, которые она готовит, зависит от того, сколько у нее одноклассников. Для этого уравнения м — это количество маффинов, а c — количество одноклассников. Какая переменная является независимой, а какая зависимой?

116. Написание переменных для сложения: В прошлом футбольном сезоне Триш забила г голов.Алекса забила на 4 гола больше, чем Триш. Напишите выражение, показывающее, сколько голов забила Алекса.

117. Написание выражений переменных для вычитания: Элизабет ест здоровый, сбалансированный завтрак b раза в неделю. Мэдисон иногда пропускает завтрак. В целом Мэдисон съедает на 3 завтрака меньше в неделю, чем Элизабет. Напишите выражение, показывающее, сколько раз в неделю Мэдисон завтракает.

118. Написание переменных выражений для умножения: В прошлом хоккейном сезоне Джек забил г голов.Патрик забил вдвое больше голов, чем Джек. Напишите выражение, показывающее, сколько голов забил Патрик.

119. Написание выражений переменных для деления: У Аманды c плиток шоколада. Она хочет равномерно распределить плитки шоколада между 3 друзьями. Напишите выражение, показывающее, сколько плиток шоколада получит один из ее друзей.

120. Решение уравнений с двумя переменными: Это уравнение показывает, как сумма, которую Лукас зарабатывает на внешкольной работе, зависит от того, сколько часов он работает: e = 12h .Переменная h представляет, сколько часов он работает. Переменная e представляет, сколько денег он зарабатывает. Сколько денег заработает Лукас, проработав 6 часов?

Как легко создавать свои собственные математические задачи со словом и рабочие листы с задачами с текстом

Вооружившись 120 примерами, чтобы зажечь идеи, создание собственных задач по математике со словом может заинтересовать ваших учеников и обеспечить согласованность с уроками. Do:

  • Ссылка на интересы учащихся: Обрамляя свои текстовые задачи интересами учащихся, вы, вероятно, привлечете внимание.Например, если большая часть вашего класса любит американский футбол, задача измерения может включать расстояние броска известного квотербека.
  • Задайте вопросы по теме: Написание словесной задачи, отражающей текущие события или проблемы, может заинтересовать учащихся, давая им четкий, осязаемый способ применения своих знаний.
  • Включите имена учащихся: Назовите персонажей вопроса в честь учащихся — это простой способ сделать предмет более понятным, помогая им справиться с проблемой.
  • Будьте явными: Повторение ключевых слов определяет вопрос, помогая учащимся сосредоточиться на основной проблеме.

Не делайте:

  • Тест на понимание прочитанного: Цветочный выбор слов и длинные предложения могут скрыть ключевые элементы вопроса. Вместо этого используйте краткие фразы и лексику на уровне своего класса.
  • Сосредоточьтесь на схожих интересах: Слишком много вопросов, связанных с интересами, такими как футбол или баскетбол, может оттолкнуть некоторых студентов или оттолкнуть их.
  • Особые опасения: Включение ненужной информации вводит еще один элемент решения проблем, подавляющий многих учеников начальной школы.

Ключ к дифференцированному обучению, словесные задачи, которые студенты могут связать и контекстуализировать, вызовут больший интерес, чем общие и абстрактные.

Заключительные мысли о математических задачах со словами

Скорее всего, вы получите максимальную отдачу от этого ресурса, используя задачи в качестве шаблонов, слегка изменив их, применив приведенные выше советы. Таким образом, они будут более актуальны и интересны для ваших учеников.

Тем не менее, наличие 120 задач по математике, соответствующих учебной программе, на кончиках ваших пальцев, должно помочь вам решать задачи по развитию навыков и давать задания, заставляющие задуматься.

Результат?

Более глубокое понимание того, как ваши ученики обрабатывают контент, и демонстрация понимания, что дает информацию о вашем текущем подходе к обучению.

Промежуточная алгебра
Урок 8: Введение в решение проблем

WTAMU > Виртуальная математическая лаборатория> Алгебра среднего уровня

Цели обучения


После завершения этого руководства вы сможете:

  1. Используйте четырехэтапный процесс Polya для решения словесных задач, связанных с числами,
    проценты, прямоугольники, дополнительные углы, дополнительные углы,
    последовательный
    целые числа и безубыточность.

Введение


Нравится вам это или нет, собираетесь ли вы
мать, отец,
учитель, программист, ученый, исследователь, владелец бизнеса,
тренер,
математик, менеджер, врач, юрист, банкир (список можно продолжать и
на), решение проблем везде.Некоторые люди
считать
что ты либо можешь это сделать, либо нет. Вопреки этому убеждению,
это может быть выученная профессия. Даже лучшие спортсмены и музыканты
имел
немного наставничества и много практики. Вот что это
также требует умения решать проблемы.

Джордж
Поля
, г.
известен как отец современного решения проблем, провел обширные исследования
а также
написал множество математических статей и три книги по проблеме
решение.
Я собираюсь показать вам его метод решения проблем, чтобы помочь вам
через
эти проблемы.

Учебник


Как упоминалось выше, я использую четыре шага Полии для решения проблемы
решение для
показать студентам, как решать задачи со словами. Просто
Примечание
что ваш учитель математики или учебник по математике могут назвать это немного иначе,
но
вы увидите, что все это в основном означает одно и то же.

Если вы выполните эти шаги, это поможет вам стать более
успешный в
мир решения проблем.

Поля создал свой знаменитый четырехэтапный процесс для
решение проблем,
, который используется повсюду, чтобы помочь людям в решении проблем:

Шаг 1. Разберитесь в проблеме.

Иногда проблема заключается в понимании
проблема
.
Если вам неясно, что нужно решить, то, вероятно, вы
будет получать неправильные результаты. Чтобы показать понимание
проблемы, вы, конечно, должны прочитать проблему
осторожно.
Звучит достаточно просто, но некоторые люди прыгают с ума и пытаются начать
решение
проблема до того, как они прочитают всю проблему. Однажды
проблема
читается, вам нужно перечислить все компоненты и данные, которые
вовлеченный.
Здесь вы будете назначать свою переменную.

Шаг 2: Разработайте план (переведите).

Когда вы разрабатываете план (переводите) , вы
придумать способ
решать проблему. Составление уравнения, построение диаграммы и
создание диаграммы — это все способы, с помощью которых вы можете решить свою
проблема.
В этом уроке мы будем настраивать уравнения для каждого
проблема.
Вы переведете их так же, как мы это делали в учебнике .
2: Учебник по алгебраическим выражениям
и
5: Свойства действительных чисел.

Шаг 3: Выполните план (решите).

Следующий шаг, выполнить план (решить) ,
большой.Это где
вы решаете уравнение, которое придумали при «разработке плана»
шаг.
Все уравнения в этом руководстве будут линейными. Если
ты
обязательно нужна помощь в их решении, вернитесь к Tutorial
7: Линейные уравнения в одной переменной
и просмотрите эту концепцию.

Шаг 4. Оглянитесь назад (отметьте
и интерпретировать).

Возможно, вам знакомо выражение «не делайте этого».
оглядываться’. В
решение проблем хорошо оглянуться назад (проверить и интерпретировать). .
По сути, проверьте, использовали ли вы всю свою информацию и что
отвечать
имеет смысл. Если ваш ответ подтвердился, убедитесь, что вы
написать
ваш окончательный ответ с правильной маркировкой.

Пример
1
: двойная разница числа, и 1 больше на 4
чем
этот номер. Найдите номер.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Так как ищем номер, сдадим

x = число

* Удалить () с помощью dist.опора

* Получить все термины x на одной стороне

* Инв. суб. 2 прибавить 2

Если вы возьмете двойную разницу 6 и 1, то есть
так же, как 4
больше 6, так что это проверка.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Число 6.

Пример
2
: Одно число на 3 меньше другого. Если
сумма двух чисел равна 177, найдите каждое число.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Ищем два числа, и так как мы можем написать
одно число
по другому номеру допустим

x = другое число

ne число на 3 меньше другого числа:

x — 3 = одно число

* Объедините похожие термины

* Инв.части 3 добавлено 3

* Инв. из мульт. 2 — это div. 2

Если мы сложим 90 и 87 (число 3 меньше 90), мы получим
177.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Одно число — 90.
Другой номер — 87.

Когда вы работаете с проблемой процента, вы
нужно убедиться
вы пишете свой процент в десятичной форме. Вы делаете это, перемещая
десятичный знак процента два слева. Например, 32% в
десятичная форма — .32

Если вы хотите найти процент некоторых
номер, запомнить
что ‘of’ представляет собой умножение
— так что вы умножите
процентов
(в десятичной форме) умноженное на число, от которого вы берете процент.

Пример
3
: Найдите 45% от 125.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Мы ищем число, которое составляет 45% от 125, мы
позволит

x = значение, которое мы есть
ищу

* Умножить

56.25 — это 45% от 125.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Номер 56,25.

Пример
4
: В математическом классе 30 учеников. Примерно
70%
сдал последний тест по математике. Сколько студентов сдали последний
математика
контрольная работа?

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Смотрим, сколько учеников сдали последний
тест по математике,
сдадим

x = количество
студенты

* Умножить

21 составляет 70% от 30.

ИТОГОВЫЙ ОТВЕТ: 21 ученик сдали последний тест по математике.

Пример
5
: Я купил новый телевизор в местном магазине электроники
для
541,25 доллара США, включая налоги. Если ставка налога составляет 8,25%, найдите
цена
телевизора до того, как они добавили налог.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Ищем цену на телевизор до того, как добавили
налог,
сдадим

x = цена телевизора
до того, как налог был добавлен.

* Объедините похожие термины

* Инв. Из мульт. 1.0825 — это div. от
1.0825

Если добавить 8.25% налога до 500, вы получите 541,25.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Первоначальная цена — 500 долларов США.

Следующая формула пригодится для решения
пример 6:

Периметр прямоугольника = 2 (длина) + 2 (ширина)

Пример
6
: На чертеже прямоугольной комнаты длина равна
На 1 дюйм больше, чем в 3 раза ширины.Найдите размеры, если
периметр
должно быть 26 дюймов.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Ищем длину и ширину
прямоугольник. С
длину можно записать через ширину, допустим

w = ширина

длина на 1 дюйм больше ширины более чем в 3 раза:

1 + 3 w = длина

* Удалить () с помощью dist.опора
* Объедините похожие термины

* Инв. доп. 2 является суб. 2

* Инв. из мульт. на 8 дел. по 8

Если ширина равна 3, то длина, которая на 1 дюйм больше, чем 3
раз больше ширины
должно быть 10.Периметр прямоугольника шириной 3
дюймов, а длина 10 дюймов получается 26.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Ширина 3 дюйма. Длина 10 дюймов.

Дополнительные и дополнительные
углы

Сумма дополнительных углов составляет 180 градусов.

Сумма дополнительных углов составляет 90 градусов.

Пример
7:
Найдите размер каждого угла на рисунке.
ниже.
Обратите внимание: поскольку углы составляют прямую линию, они равны
дополнительный
друг другу.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

На рисунке уже дано, что

x = один угол

5 x = другой угол

* Объедините похожие термины

* Инв.из мульт. на 6 дел. по 6

Если x равно 30, то 5 x = 5 (30) = 150. 150 и 30 делают
сложить, чтобы быть
180, так что это дополнительные углы.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Два угла: 30 градусов и 150 градусов.

Целые числа, идущие подряд — это целые числа, следующие за
друг друга в
заказывать.

Например, 5, 6 и 7 — три
последовательные целые числа.

Если мы позволим x представить первое целое число,
как бы мы представили второе подряд целое число в виде x ? Что ж, если мы посмотрим на 5, 6 и 7 — обратите внимание, что 6 — это один
больше 5, первое целое число.

В общем, мы могли бы представить второй
последовательное целое число на x + 1
. А как насчет третьего целого числа подряд.

Ну, обратите внимание, как 7 на 2 больше, чем на 5. В
в общем, мы могли бы представить
третье последовательное целое число как x + 2.

Последовательные ЧЕТНЫЕ целые числа — четные целые числа,
следовать друг за другом
чтобы.

Например, 4, 6 и 8 — три последовательных
даже целые числа.

Если мы позволим x представить первое ЧЕТНОЕ целое число,
как бы мы представили второе подряд четное целое число в виде x ?
Обратите внимание, что 6 на два больше, чем 4, первое четное число.

В общем, мы могли бы представить второй
последовательное ЧЕТНОЕ целое число
по x + 2
.

А как же третий подряд четный
целое число? Хорошо подмечено
как 8 на 4 больше, чем 4. В общем, мы могли бы представить
в третьих
последовательное ЧЕТНОЕ целое число как x + 4.

Последовательные целые нечетные числа — нечетные целые числа, которые
следовать друг за другом
чтобы.

Например, 5, 7 и 9 — три последовательных
нечетные целые числа.

Если мы позволим x представить первое целое число ODD,
как бы мы представили второе подряд нечетное целое число x ?
Обратите внимание, что 7 на два больше, чем 5, первое нечетное целое число.

В общем, мы могли бы представить второй
последовательное нечетное целое число
по x + 2.

А как насчет третьего подряд нечетного
целое число? Ну заметьте как
9 на 4 больше, чем 5. В общем, можно было бы представить третьим
последовательный
Целое число ODD как x + 4.

Обратите внимание, что распространенное заблуждение состоит в том, что, поскольку
мы хотим нечетное число
что мы не должны складывать 2, которое является четным числом. Держать в
помните, что x представляет ODD
число и
что следующее нечетное число находится на расстоянии 2, точно так же, как 7 находится на расстоянии 2 от 5, поэтому мы
нужно прибавить 2 к первому нечетному числу, чтобы перейти ко второму подряд
нечетное число.

Пример
8:
Сумма трех последовательных целых чисел равна 258.
Находить
целые числа.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Ищем 3 последовательных целых числа, допустим

x = 1-е целое число подряд

x + 1 = 2-е целое число подряд

x + 2 = 3-е целое число подряд

* Объединить похожие термины
* Инв.добавления 3 является подпунктом. 3

* Инв. из мульт. на 3 — div. по 3

Сумма 85, 86 и 87 действительно равна 258.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Три последовательных целых числа: 85, 86 и 87.

Пример
9:
Возраст трех сестер равен 3 года подряд.
целые числа.
Если сумма удвоенного 1-го четного целого, 3-кратного 2-го четного целого числа,
и третье четное целое число 34, найдите каждый возраст.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Ищем 3 ЧЕТЫЕ последовательные целые числа, мы будем
пусть

x = 1-е последовательное четное целое число

x + 2 = 2-е последовательное четное целое число

x + 4 = 3-е последовательное четное целое число

* Удалить () с помощью dist.опора
* Объедините похожие термины

* Инв. доп. 10 является суб. 10

* Инв. из мульт. на 6 дел. по 6

Если мы возьмем сумму, умноженную на два, четыре, три, шесть и
8, мы получаем
34

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: Возраст трех сестер — 4, 6 и 8 лет.

Business Problem: Breaking (Бизнес-проблема: ломка)
Даже

В проблеме, связанной с бизнесом, уравнение затрат C — это стоимость производства продукта.

В уравнении доходов рэнд — это сумма
денег, которые производитель зарабатывает на продукте.

Если производитель хочет знать, сколько товаров должно
быть проданным, чтобы сломать
даже то, что можно найти, установив стоимость равной выручке.

Пример
10:
Стоимость C до
произведите x , количество компакт-дисков будет C = 50 + 5 x .
Компакт-диски продаются оптом по цене 15 долларов за штуку, поэтому доход рэндов равен рэндам = 15 x .
Узнайте, сколько компакт-дисков нужно изготовить и продать, чтобы их сломать.
четный.

Убедитесь, что вы внимательно прочитали вопрос.
раз.

Мы ищем количество проданных компакт-дисков
безубыточность,
сдадим

x = количество
cd’s

* Получить все условия x
с одной стороны

* Инв.из мульт. на 10 — дел. от
10

Когда x равно 5, стоимость и
доход как
равно 75.

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ: 5 компакт-дисков.

Практические задачи


Это практические задачи, которые помогут вам
следующий уровень.
Это позволит вам проверить и понять, понимаете ли вы
эти
типы проблем. Math работает так же, как
что-нибудь
иначе, если вы хотите добиться успеха в этом, вам нужно практиковаться
Это.
Даже лучшие спортсмены и музыканты получали помощь и много
практиковаться, практиковаться, практиковаться, чтобы стать лучше в своем виде спорта или инструмента.

На самом деле не бывает слишком много практики.

Чтобы получить максимальную отдачу от них, вы должны работать
проблема на
свой собственный, а затем проверьте свой ответ, щелкнув ссылку для
ответ / обсуждение
для этой проблемы
. По ссылке вы найдете ответ
а также любые шаги, которые позволили найти этот ответ.

Практика
Задачи 1a — 1g:
Решите проблему со словом.

1с. В местном мебельном магазине потрясающий
распродажа.
Они снижают каждую цену на 45%. Если кушетка у вас есть
на глаз стоит 440 долларов после уценки, какой был оригинал
цена?
Сколько бы вы сэкономили, если бы купили его на этой распродаже?
(ответ / обсуждение
к 1c)
1г.Прямоугольный сад имеет ширину 8
футов меньше чем
вдвое длиннее. Найдите размеры, если периметр 20
ноги.
(ответ / обсуждение
к 1г)

1д. Сумма дополнительных углов составляет 90
градусов. Находить
размер каждого угла на рисунке ниже. Обратите внимание, что поскольку
в
углы составляют прямой угол, они дополняют друг друга.

(ответ / обсуждение
к 1e)

1г. Стоимость C к
произвести x номеров видеомагнитофонов C = 1000 + 100 x .
Видеомагнитофоны продаются оптом по 150 долларов за штуку, поэтому выручка рассчитывается по формуле рэндов = 150 x .Узнайте, сколько видеомагнитофонов
производитель
необходимо производить и продавать, чтобы достичь безубыточности.
(ответ / обсуждение
до 1г)

Нужна дополнительная помощь по этим темам?



Последний раз редактировал Ким Сьюард 1 июля 2011 г.
Авторские права на все содержимое (C) 2002 — 2011, WTAMU и Kim Seward. Все права защищены.

Решение задач: 3 класс по математике

    Приборная панель

    Математика 3 класс

    Решение проблем

    Перейти к содержанию

    Приборная панель

    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать